中国明对虾 C-型凝集素基因（Fclectin）的重组表达及活性分析

刘逸尘1,2, 刘丽静1,2, 张亦陈1,2, 赖绪云3, 孙妍3, 孙金生1,2,3，
（1. 天津师范大学生命科学学院，天津 300387；
2. 天津市细胞遗传与分子调控重点实验室，天津 300387；
3. 天津市水产养殖病害防治中心，天津 300221）

摘要：研究探过分析中国对虾 C 型凝集素的活性特点，探讨其在对虾先天免疫应答过程中的潜在功能以及在养殖生产实践中的应用。实验利用原核表达系统对中国明对虾 C 型凝集素基因的两个串联的糖识别结构域（carbohydrate recognition domain, CRD）进行了重组表达，并通过纯化、复性获得了重组目的蛋白（Fclectin-CRD1 和 Fclectin-CRD2）。活性分析结果显示，重组目的蛋白对多种病原菌有凝集和抑制生长的作用，并且具有 Ca2+ 依赖活性。其凝集活性可被半乳糖、乳聚糖、甘露糖等多种病原相关分子模式所抑制。研究结果证实，Fclectin 是一种典型的 C 型凝集素，它可能作为中国明对虾先天免疫系统的重要模式识别受体，在一定程度上参与了机体应答病原微生物的防御过程。

关键词：中国明对虾；C-型凝集素；糖识别结构域；先天免疫；重组表达；凝集；抑菌活性

中图分类号：Q 786；S 917.4

文献标志码：A

近年来，对虾疾病的频繁发生对对虾养殖业带来了巨大的经济损失，对其免疫机制的深入理解并逐步应用于生产实践是解决病害问题的关键。在免疫系统中，先天性免疫防御机制通过识别来自病原微生物的病原相关分子模式（pathogen associated molecular pattern, PAMP）来激活免疫反应。PAMP 的识别过程主要包括模式识别受体（pattern recognition receptor，PRR）识别 PAMP，并通……
材料与方法

1.1 实验材料

实验动物、菌株、质粒：中国明对虾（体长8-10 cm）购于天津市神堂水产育苗养殖有限公司，实验前在水族箱中充气暂养7 d，使其适应实验室内的养殖环境；质粒 TOP10F’为本实验室保存，表达宿主菌 BL21（DE3）plysS 感受态细胞购于北京天根生化科技有限公司；实验中所用到的致病菌（鳗弧菌、哈维氏弧菌、金黄色葡萄球菌、枯草芽孢杆菌、苏云金芽孢杆菌、酵母菌、白色念珠菌）由天津市水产养殖病害防治中心提供；克隆载体 pMD18-T 购自 TaKaRa 公司，表达载体 PET-21a (+）由中国科学院海洋研究所宋林生研究员馈赠。

实验室 TRIZol 总 RNA 提取试剂盒（Invitrogen）；限制性核酸内切酶、T，DNA 连接酶、DNA marker（TaKaRa）；质粒提取试剂盒及 DNA 凝胶纯化试剂盒、N-乙酰-D-葡萄糖胺（N-Acetyl-D-glucosamine）、D-甘露糖（D-mannose）、D-果糖（D-fructose）、D-葡萄糖（D-glucose）、D-半乳糖（D-galactose）、蔗糖（sucrose）、海藻糖（trehalose）、DAPI（上海生工）；N-乙酰-D-半乳糖胺（N-Acetyl-D-galactosamine）和 N-乙酰-D-葡萄糖胺（N-Acetyl-D-glucosamine）、肽聚糖（peptidoglycan from Micrococcus luteus）、 fibrin 肽（Lipopolysaccharides from Escherichia coli 055；B5）（Sigma）；蛋白 marker（Fermentas）；其它试剂均为国产或进口分析纯产品。

实验仪器：梯度 PCR 仪（Bio-Rad）；微量核酸蛋白测定仪（Bio-Rad）；恒温培养箱（上海博讯实业有限公司医疗设备厂）；快速蛋白液相系统（BioLogic DuoFlow，Bio-Rad）；台式冷冻离心机（Eppendorf）；荧光显微镜（Nikon）。

1.2 总 RNA 的提取及第一链 cDNA 的合成

从健康的中国明对虾第一腹节基部血窦抽取出血淋巴，经离心获得血细胞，参照 TRIZol 说明书的方法提取血细胞总 RNA。提取的总 RNA 经琼脂糖凝胶电泳与微量核酸蛋白测定仪进行定性及定量检测，-80 ℃保存备用。以 2 μL 血细胞总 RNA 为反转录模板，poly（T）引物（AOLP，5'-GGCCACCGCGTCGACTAGTTAC（T）16'（A/C/G）-3'）为反转录引物，合成第一链 cDNA。

http://www.scxuebao.cn
1.3 *Flectin-CRD1* 和 *Flectin-CRD2* 的表达和纯化

表达载体的构建 根据前期研究中的 *Flectin* 序列（GenBank 注册号：AY871270）和 pET-21a (+) 表达载体序列特征，设计并合成表达引物 *Flectin-F3*（5' - CATATGCTGTCAGTTGTCTCTACTGACGCG-3'）,*Flectin-F4*（5' - CATATGCTGTCCTGAAACTTTTATC-3'）和 *Flectin-R3*（5' - AAGCTTTATGCATGTTGTGTTGTCGTCCAGACGAAAGTG-3'），将表达载体 *NdeI* 裂位点，下游引物 5'端含 *HindIII* 裂位点。以大肠杆菌 cDNA 为模板进行 PCR 反应，扩增其基因编码区，并用 T7 DNA 连接酶进行连接。将测序正确的阳性克隆的质粒与表达载体质粒 pET-21a (+) 同时用 *NdeI* 和 *HindIII* 进行双酶切，琼脂糖凝胶电泳回收酶切片段及表达载体质粒，并用 T4 DNA 连接酶连接，构建重组表达质粒 pET-21a (+)-CRD1 和 pET-21a (+)-CRD2，转化大肠杆菌 BL21(DE3) pLys S 受体细胞，将检测正确的阳性克隆进行测序（北京华大基因公司），从而保证待用。

重组蛋白的表达和表达产物的初步分析

取 1mL 上述保种菌株加入 20mL 新鲜的 LB 培养液中（含 100 µg/mL 氨苄青霉素），37 ℃，200 r/min 培养至 OD_{600} 达到 0.6～0.8 时，取出 1mL 未诱导的菌液，其余的菌液在 37 ℃，200 r/min 条件下以终浓度为 1mmol/L 的 IPTG 继续诱导培养 6h，在 0.5, 1, 2, 3, 4, 5 和 6 h 分别取样（每次 1mL），将收集到的样品在 4 ℃，10000 r/min 条件下离心 5 min，菌液保存于 -20 ℃待用。在每个样品中加 100 µL 上样缓冲液（1 mol/L pH 6.8 Tris-HCl, 1% 甘油，154g DTT, 10% SDS, 10% 甘油）处理，沸水浴 10 min，裂解菌体，将收集到的样品进行 15% SDS-PAGE 电泳检测，以确定蛋白的最佳诱导时间。

重组蛋白的分离纯化及复性 为将上述保种菌株在 37 ℃条件下大量培养至菌体密度达到 OD_{600} 为 0.6～0.8，加入终浓度为 1mmol/L 的 IPTG 继续诱导培养 5h 后，4 ℃条件下 10 000 r/min 离心 10 min 收集菌体，按 1 g 菌体加 10 mL 磷酸缓冲液（1% TritonX-100, 2 mmol/L EDTA）的比例重悬菌体，在冰浴条件下超声破碎，4 ℃，10 000 r/min 离心 10 min 收集包涵体；用磷酸缓冲液（300 mmol/L KCl, 50 mmol/L KH_{2}PO_{4}, 5 mmol/L L 4-Imidazole, 1 mol/L Urea, pH = 8.0）洗涤 3 次。

上述洗涤获得的包涵体溶于磷酸缓冲液（300 mmol/L KCl, 50 mmol/L KH_{2}PO_{4}, 5 mmol/L L 4-Imidazole, 8 mol/L Urea, pH = 8.0），振荡 20 min，4 ℃条件下 10 000 r/min 离心 10 min，取上清，应用快速蛋白液相系统（BioLogic DuoFlow, Bio-Rad），通过固定金属亲和层析 IMAC 和 Ni-NTA 技术进行目的蛋白的分离纯化

Bio-Scale Mini purification IMAC 操作手册进行。分离纯化后的目的蛋白置于处理好的透析装置中，依次加入含有 8, 6, 4, 2, 1 和 0 mol/L 尿素的 Tris-HCl 缓冲液中（50 mmol/L, pH = 7.4），在 4 ℃条件下每 10 h 透析 4 h 进行反复处理，将复性后的蛋白脱盐后冻干称重，保存于 -80 ℃。

胶内酶解与 LC-ESI-MS 测定 将 SDS-PAGE 胶上的目的带条切下，利用胰蛋白酶继续进行酶内酶解，取 25 µL 酶解后的样品进行离子阱质谱鉴定（LCQ DECA XP STM, ThermoFirmigan, USA），利用 Bioworks 软件与 SEQUEST 数据库进行比对分析。

1.4 重组目的蛋白(*rFlectin-CRD1* 和 *rFlectin-CRD2*) 的活性分析

重组目的蛋白的药理活性研究 参考 Xu 等[24] 的方法稍作修改，具体步骤如下：取 25 µL 酶解后的样品进行离子阱质谱鉴定（LCQ DECA XP STM, ThermoFirmigan, USA），利用 Bioworks 软件与 SEQUEST 数据库进行比对分析。
增加白的表达

白的糖特异性结合性质可以通过分析抑制凝集效果得到。参考Xu等[26]的方法略微修改，具体步骤如下：将10 μL重组目的蛋白（终浓度为200 μg/mL）10 μL用TBS-Ca²⁺溶液梯度稀释的不同糖类（单糖终浓度为50～400 μmol/L，二糖终浓度为100～300 μg/mL，糖链多糖终浓度为12.5～250 μg/mL）分别混匀，每个浓度设置3个平行实验。室温孵育45 min，加入10 μLDAPI标记的大肠杆菌（2.5×10⁸个/mL）混匀后孵育45 min，荧光镜检，通过重组目的蛋白对大肠杆菌的抑制效果分析其糖结合活性。

重组蛋白的蛋白表达量分析

采用液体生长方法检测rFectin-CRD1和rFectin-CRD2的最小抑菌浓度（minimum inhibitory concentration, MIC）[21]，各菌株在液体培养基中培养过夜，将其连入表达载体作为模板进行PCR扩增，获得含有关CRDs的目的片段，回收片段，经测序验证正确后，将其连入表达载体pet21a后转化耐受菌的表达宿主菌BL21（DE3）pLysS感受态细胞，重组载体表达后表明确载体构建成功。

重组蛋白的诱导表达和表达产物的初步分析

经IPTG诱导，利用SDS-PAGE检测重组蛋白的表达，结果发现，宿主菌的蛋白表达图谱发生了变化，在预期分子量18.4 ku和14.4 ku的位置分别出现了特定的蛋白条带，该蛋白的表达量与诱导时间显著相关，伴随诱导时间的延长，蛋白表达量显著增加，在诱导5 h后表达量达到平台期。继续培养，目的蛋白表达量相对稳定，不再显著增加，所以可以推断这两条蛋白条带就是重组目的蛋白。由于重组蛋白白带有一个组氨酸标签（-MRGSHHHHHHHHG-），所以分子量略大于其预期的理论分子量。通过凝胶扫描系统分析发现，这两条蛋白谱带的表达量分别占到了宿主菌总蛋白含量的30%左右。

重组蛋白的纯化与复性

利用Ni-IDA技术对超声波破碎菌体中的重组蛋白分别进行分离纯化，电泳检测显示在14.4 ku和18.4 ku位置各有一条单一蛋白质带（图1），这与预期结果一致。纯化的目的蛋白复性后得率为4.0 g/L。

图1 重组目的蛋白经IPTG诱导前后及纯化后的SDS-PAGE检测结果

泳道1. 标准蛋白Marker；泳道2. 未经IPTG诱导的重组蛋白阳性菌；泳道3. 经IPTG诱导的重组蛋白阳性菌；泳道4. 纯化的重组蛋白Fectin-CRD1蛋白；泳道5. 未经IPTG诱导的重组蛋白阴性菌；泳道6. 经IPTG诱导的重组蛋白阴性菌；泳道7. 纯化的重组蛋白Fectin-CRD2蛋白。

Fig.1 Expression and purification of the target fusion protein

Lane 1. protein molecular weight (ku) marker；Lane 2. crude extract from BL21（DE3）pLysS（the expression vector uninduced；CRD1）；Lane 3. crude extract from BL21（DE3）pLysS（the expression vector induced with IPTG；CRD1）；Lane 4. the purified rFectin-CRD1；Lane 5. crude extract from BL21（DE3）pLysS（the expression vector uninduced；CRD2）；Lane 6. crude extract from BL21（DE3）pLysS（the expression vector induced with IPTG；CRD2）；Lane 7. the purified Fectin-CRD2。

质谱鉴定结果

为了验证上述蛋白谱带就是重组目的蛋白，对蛋白谱带进行了胶内酶解和LC-ESI-MS质谱分析鉴定，用Bioworks软件与SEQUST数据库进行比对后发现，所切下的两个重组蛋白谱带分别各自有一个肽段与中国明对虾C型凝集素基因的推导氨基酸序列完全匹配，序列分别为-AQDWSETQPDDYGGEDCLEIR-和-ECFHLSTTALSWNAAR-（图2）。由此可以判断，上述蛋白条带即为重组表达的蛋白（rFectin-CRD1和rFectin-CRD2），中国明对虾

http://www. sexuebao. cn
Flectin 的结构域成功地获得了体外重组表达。

2.2 重组蛋白的活性分析

重组蛋白的病原菌凝集活性分析 通过 DAPI 染色发现，在 Ca²⁺ 存在的条件下，rFlectin-CRD1 和 rFlectin-CRD2 均可以凝集苏云金芽孢杆菌 (G⁺)、哈维氏弧菌和大肠杆菌 (G⁻) 以及酵母菌和白色念珠菌 (真菌)。此外，后者还可凝集金黄色葡萄球菌 (G⁺)（表 1 和图 3）。重

图 2 重组目的蛋白 (rFlectin-CRD1 和 rFlectin-CRD2) 中与中国明对虾 C 型凝集素相匹配肽段的二级质谱图 (a) 和 (b) 分别为两个肽段 -AQDWSETQPDDYGGGEDCLEIR- 和 -ECFHLSTSALSWNAAR- 的匹配分析结果。

Fig. 2 Characteristic spectrum of the matched peptide fragments from rFlectin-CRD1 and rFlectin-CRD2 with C type lectin of *F. chinensis*

(a) and (b) showed the spectra of matched peptide fragments (-AQDWSETQPDDYGGGEDCLEIR- and -ECFHLSTSALSWNAAR-), respectively. The abscissa represents the nuclear mass ratio; the ordinate axis represents the ionic strength.

图 3 重组目的蛋白对不同病原菌的凝集活性分析

Fig. 3 Pathogens agglutinating activity of rFlectin-CRD1 and rFlectin-CRD2 proteins

http://www.scxuebao.cn
表 1 重组目的蛋白对不同病原菌的凝集活性及最小凝集浓度
Tab. 1 Pathogens agglutinating activity of rFlectin CRD1 and CRD2 proteins

<table>
<thead>
<tr>
<th>微生物</th>
<th>rFlectin-CRD1</th>
<th>rFlectin-CRD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>前肠杆菌 G+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>肺炎克雷伯菌</td>
<td>200</td>
<td>12.5</td>
</tr>
<tr>
<td>金黄色葡萄球菌</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>短芽孢杆菌 Bacillus subtilis</td>
<td>NA</td>
<td>100</td>
</tr>
<tr>
<td>霉菌</td>
<td></td>
<td></td>
</tr>
<tr>
<td>酿酒酵母 Saccharomyces cerevisiae</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>白色念珠菌 Candida albicans</td>
<td>12.5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

注: NA。重组目的蛋白对不同病原菌的凝集活性及最小凝集浓度(μg/mL)。

表 2 重组目的蛋白的糖结合活性分析
Tab. 2 Carbohydrates recognition activity of rFlectin CRD1 and CRD2 proteins

<table>
<thead>
<tr>
<th>糖</th>
<th>rFlectin-CRD1</th>
<th>rFlectin-CRD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-葡萄糖 D-mannose</td>
<td>NA</td>
<td>400 mmol/L</td>
</tr>
<tr>
<td>葡萄糖 D-fructose</td>
<td>NA</td>
<td>>400 mmol/L</td>
</tr>
<tr>
<td>D-葡萄糖 D-galactose</td>
<td>>400 mmol/L</td>
<td>>400 mmol/L</td>
</tr>
<tr>
<td>半乳糖</td>
<td>200 mmol/L</td>
<td>>400 mmol/L</td>
</tr>
<tr>
<td>N-乙酰 D-甘露糖 N-Acetyl-D-mannosamine</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>N-乙酰-D-半乳糖胺 N-Acetyl-D-galactosamine</td>
<td>NA</td>
<td>400 mmol/L</td>
</tr>
<tr>
<td>蔗糖 sucrose</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>麦芽糖 maltose</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>甘露糖 trehalose</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>脂多糖 peptidoglycan</td>
<td>NA</td>
<td>100 μg/mL</td>
</tr>
<tr>
<td>甘露糖 LPS</td>
<td>31.25 μg/mL</td>
<td>250 μg/mL</td>
</tr>
</tbody>
</table>

注: NA。在 400 mmol/L 条件下，仍无法抑制细菌凝集作用。重组目的蛋白对不同病原菌的糖结合活性及最小凝集浓度(μg/mL)。

表 3 重组目的蛋白对主要病原菌的抗菌活性及最小抑制浓度 (MIC)
Tab. 3 Antimicrobial activity and MIC of rFlectin CRD1 and CRD2 proteins

<table>
<thead>
<tr>
<th>微生物</th>
<th>rFlectin-CRD1</th>
<th>rFlectin-CRD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>前肠杆菌 G+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>肺炎克雷伯菌 Bacillus thuringiensis</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>金黄色葡萄球菌 Staphylococcus aureus</td>
<td>150</td>
<td>12.5</td>
</tr>
<tr>
<td>短芽孢杆菌 Bacillus subtilis</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>霉菌</td>
<td></td>
<td></td>
</tr>
<tr>
<td>啤酒酵母 Saccharomyces cerevisiae</td>
<td>NA</td>
<td>12.5</td>
</tr>
<tr>
<td>白色念珠菌 Candida albicans</td>
<td>12.5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

注: NA。在 160 μmol/L 条件下，仍没有抑菌作用。重组目的蛋白对主要病原菌的抗菌活性及最小抑制浓度(μmol/L)。

http://www.scxuebao.cn
3 讨论

C-型凝集素广泛存在于脊椎动物和无脊椎动物中，对细胞表面的多糖表现出重要的识别机制，行使了一系列重要的生理功能。作为模式识别受体，可以通过识别微生物生物细胞壁的糖成分（病原相关分子模式）而启动机体下游的免疫应答途径，因此在先天免疫过程中发挥着重要的作用：包括对病原微生物的凝集吞噬作用；介导细胞的粘附、迁移和细胞间相互作用；促进免疫细胞活化，从而诱导血细胞中各种酶类释放；参与止血、凝固、物质运输及创伤修复等一系列作用；引发lectin补体途径的激活等。此外，凝集素还参与了针对病原微生物的直接一线防御，细胞运输、免疫调节和自身免疫的预防等过程。因此在先天免疫过程中发挥着重要的作用。通过识别微生物生物细胞壁的多糖成分（病原相关分子模式，PAMP）而达到识别病原的目的。所有C-型凝集素均含有该结构域，而其他类型的凝集素却没有，并且其在脊椎动物和无脊椎动物中都相当保守，所以本研究单独克隆了Flectin的两个结构域进行活性和功能的研究。C-型凝集素可能含有一个或多个功能结构域（CRD），CRD作为识别碳水化合物的结构域在Ca\(^{2+}\)的存在下起到了介导糖结合的功能，因此许多含有CRD的分子（C-型凝集素，凝集素结合蛋白，IgE Fc受体和NK细胞受体等）都和免疫相关。

大多数C-型凝集素是钙离子依赖性，而且对二价螯合剂十分敏感，来自斑节对虾的C-型凝集素PmLec也是钙离子依赖性的。细菌凝集实验证明克隆的到得C-型凝集素的两个CRD也是Ca\(^{2+}\)依赖性的，在一定Ca\(^{2+}\)存在的条件下，CRD1和CRD2可以凝集多种革兰氏阴性菌、阳性菌和真菌，结果显示和CRD1比CRD2可凝集的细菌种类较多，凝集细菌所需最小浓度也较低，说明CRD2比CRD1有更强的凝集细菌的能力。两个CRD结构域凝集细菌的种类和所需最小浓度不同，说明两个结构域在无脊椎动物先天免疫应答过程中所执行的功能不同，可以同时凝集不同的细菌，从而加强机体的免疫反应，但这些在一定程度上反映了C型凝集素基因可能不仅参与调控对虾机体的免疫识别过程，同时还作为端效应物直接作用于病原菌，从而保护机体免受病原微生物的侵害。目前报道的与病原体相关的C型凝集素大多含有多个串联的CRD结构域，因其序列和结构特征不同，往往执行着不同的功能，多个结构域同时发挥作用赋予了C型凝集素多重功能。

本研究通过分析目的蛋白的糖结合活性可推断其可能识别的病原微生物。为了研究可以与重组蛋白特异性结合的糖的种类设计了糖特异性结合实验。糖特异性结合能力与抑制凝集的能力相关，能抑制凝集所需糖的浓度越低，说明重组蛋白与此种糖的结合能力越强。实验结果显示，CRD1可以特异性地结合半乳糖（200 mmol/L）。此外，较高浓度的D-葡萄糖与目的蛋白孵育后有抑制细菌凝集的作用，低浓度的脂多糖（LPS）与目的蛋白孵育后就有较明显的抑制细菌凝集效果。与CRD1相比CRD2显示了更强的与糖类结合的能力。高浓度下可以特异性结合多种单糖，包括D-甘露糖，D-葡萄糖，D-半乳糖，N-乙酰-D-半乳糖胺，表明重组目的蛋白不仅可以结合半乳糖而且可以特异性结合半乳糖的衍生物。此外，CRD2对脂多糖和肽聚糖均有结合作用，进一步说明CRD作为模式识别受体通过识别细菌表面糖蛋白使细菌发生凝集作用。CRD1和CRD2可以凝集不同的细菌并且特异性结合不同的糖类，这充分说明了两个结构域是相互协作发挥作用的。对虾中有许多C-型凝集素有类似的作用，例如PmLec的凝集活性可以被LPS所抑制，FcLec2可以特异性地识别LPS，肽聚糖和脂磷壁酸。

C-型凝集素的功能有多种，许多C-型凝集素有抑菌活性，可以作为一线防御应答效应物发挥作用。如蛇毒C-型凝集素表现出抗革兰氏阴性菌和革兰氏阳性菌的活性，本实验中的重组蛋白CRD1和CRD2有很显著的抗革兰氏阳性菌，CRD1对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏阳性菌抑制作用较高，但对革兰氏阴性菌抑制作用较低，说明CRD2对革兰氏

http://www.scxuebao.cn
Recombinant expression and functional characterization of a C-type lectin (Flectin) from the Chinese shrimp (Fenneropenaeus chinensis)

LIU Yi-chen¹,², LIU Li-jing¹,², ZHANG Yi-chen¹,², GENG Xu-yun¹, SUN Yan³, SUN Jin-sheng¹,²,³*

1. College of Life Science, Tianjin Normal University, Tianjin 300387, China;
2. Tianjin Key Laboratory of Cyto-genetical and Molecular Regulation, Tianjin 300387, China;
3. Tianjin Aquaculture Disease Prevention & Treatment Center, Tianjin 300221, China

Abstract: Chinese shrimp (Fenneropenaeus chinensis) is distributed mainly along Chinese inshore areas, and is one of the most important farmed shrimp in China. The studies on innate immune responses of shrimps, especially on immune defense against the main crustacean pathogens, will provide more knowledge of shrimp immunity to prevent infectious diseases. Invertebrates do not possess an adaptive immune system based on highly specific antibodies and antigen receptors. They must rely on efficient immune defenses capable of protecting them against invading microorganisms. The chief issue of crustacean immunity should concern non-self-recognition mechanisms. Proteins that specifically bind to certain carbohydrate components on the surface of microorganisms play an important role in non-self-recognition and cleaning up of the invading microorganisms. Such proteins are known as pattern recognition receptors (PRRs). Lectins exist in almost all living organisms. Due to their ability of binding to terminal sugars on glycoproteins and glycolipids, lectins are primary candidates for pattern recognition receptors in innate immunity. C type Lectin is regarded as a potential molecule involved in immune recognition and phagocytosis through opsonization in crustacean. In the preliminary study, a novel C-type lectin was cloned from hemocytes of Chinese shrimp, (Fenneropenaeus chinensis). It contains two tandem carbohydrate recognition domains (CRDs) / C-type lectin-like domains. Both of the CRDs contain a QPD (Gln-Pro-Asp) motif that has a predicted binding specificity for galactosetype sugar. In this research, two recombinant target proteins (rFlectin-CRD1 and rFlectin-CRD2) were expressed by prokaryotic expression system. The result showed that fusion protein was expressed in the form of inclusion bodies. The LC-ESI-MS analysis showed that two peptide fragments of rFlectin-CRD1 and rFlectin-CRD2 were identical with the corresponding sequence of F. chinensis C-type lectin. Recombinant protein was purified by immobilized-metal affinity chromatography and Ni-NTA technology. The concentrations of purified target proteins were 0.4 g/L. rFlectin-CRD1 and rFlectin-CRD2 had agglutinating and antimicrobial activity against main pathogens in aquaculture in a calcium-dependent manner. The agglutinating activity can be inhibited by multiple carbohydrates, such as galactose, peptidoglycan and lipopolysaccharide. These results suggest that Flectin, as a Ca²⁺-dependent carbohydrate-recognition protein, is one of the important PRRs. It might play a crucial role in the innate immunity of the shrimp and is expected to be applied in disease control.

Key words: Fenneropenaeus chinensis; C-type lectin; carbohydrate recognition domain (CRD); innate immunity; recombinant expression; agglutinating; bacteriostatic activity

Corresponding author: SUN Jin-sheng. E-mail: jssun1965@yahoo.com.cn

http://www.scxuebao.cn